

Agilent N1913A and N1914A EPM Series Power Meters

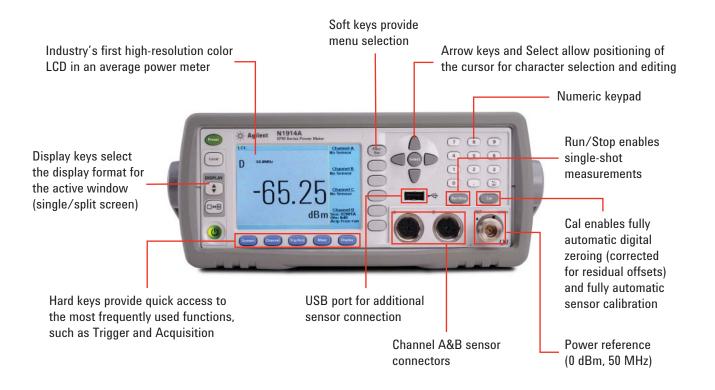
Consistent Results and Greater Capability

Data Sheet

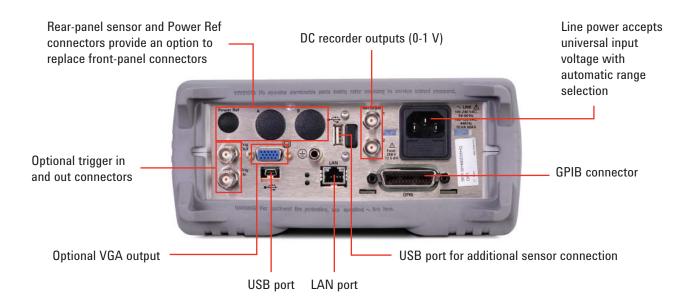
As signals become more complex, it becomes more difficult to make fast, accurate power measurements. For years, you've depended on Agilent's EPM Series power meters. Today, the Agilent N1913A and N1914A EPM power meters are versatile, user-friendly replacements for the E4418B/19B EPM Series. Best of all, you get these extras for about the same price as the EPM Series. Get consistent results and greater capability—with the new EPM power meters.

Essential specifications

- Frequency range: 9 kHz to 110 GHz
- Power range: -70 dBm to +44 dBm (100 pW to 25 W, depending on the attached power sensor)
- Measurement speed: Up to 400 readings/sec with E-Series sensors
- Absolute accuracy: ±0.02 dB logarithmic, ±0.5% linear
- Relative accuracy: ±0.04 dB logarithmic, ±1% linear


Do more with new-generation EPM power meters

- · Get up to four channels1 to speed and simplify RF average power measurements
- Measure faster with improved measurement speed of 400 readings/sec with the Agilent E-Series sensors
- View test results more easily with the industry's first color LCD readout in an average power meter
- · Go beyond GPIB with USB and LAN/LXI-C interfaces
- Automate frequency/power sweep measurements with the optional external trigger in/out feature
- Confirm battery power with a single-button push²—and get extra operating time with the optional spare battery
- Easily replace existing 436A. 437B and 438A meters with optional 43x code compatibility³
- Enhance manufacturing test by connecting a large external monitor with the unique VGA output option
- 1. Additional two optional USB channels available (see Ordering Information, page 10)
- 2. Only applicable for models with battery option (see Ordering Information, page 10)
- 3. N1913A is backward compatible with the 436A and 437B, while N1914A is compatible with 438A



Take a Closer Look

N1914A front panel

N1914A back panel

N1913A/14A Series Power Meter: Applications and Compatible Sensors for Average Power Measurements

Signal characteristics >	cw				Modul	ated					
		Pulse/	/ AM/FM Wireless standards								
	CW	averaged	profiled		Mobile phon	е	WLAN	WPAN	WMAN		
Typical application examples >	Metrology lab	Radar/ navigation	Mobile radio	GSM EDGE GPRS	CDMA2000 cdma0NE IDEN	3G HSPA LTE	802.11a 802.11b 802.11g 802.11n	Bluetooth® RFID ZigBee	Wimax Wibro		
Themocouple sensors: 8480A/B/H, N8480A/B/H, R/Q8486A, N8486AR/AQ	•	•	•	• Average only	• Average only	• Average only	• Average only	• Average only	• Average only		
Diode sensors: 8480D, V8486A, W8486A	•	•	•	• Average only	• Average only	• Average only	• Average only	• Average only	• Average only		
Diode sensors compensated for extended range: E4412A/3A	•		FM only								
Two-path diode-stack sensors: E9300 Series	•	•	•	• Average only	• Average only	• Average only	• Average only	• Average only	• Average only		
USB sensors: U2000 Series	•	•	•	• Average only	• Average only	• Average only	• Average only	• Average only	• Average only		

^{*} The N1913A/4A power meters are compatible with all 8480 Series power sensors, including discontinued models.

Specifications describe the instrument's warranted performance and apply after a 30 minute warm-up. These specifications are valid over its operating/environmental range unless otherwise stated and after performing a zero and calibration procedure.

Supplemental characteristics (shown in italics) are intended to provide additional information, useful in applying the instrument by giving typical (expected), but not warranted performance parameters. These characteristics are shown in italics or labeled as "typical", "nominal" or "approximate".

Compatible power sensors	Agilent 8480 Series
	Agilent E9300 E-Series
	Agilent E4410 E-Series
	Agilent N8480 Series
	Agilent U2000 Series
Frequency range	9 kHz to 110 GHz, sensor dependent
Power range	-70 dBm to +44 dBm (100 pW to 25 W), sensor dependent
Single sensor dynamic range	90 dB maximum (Agilent E-Series power sensors)
	50 dB maximum (Agilent 8480 Series power sensors)
	55 dBm maximum (Agilent N8480 Series power sensors)
	80 dBm maximum (Agilent U2000 Series USB power sensors)
Display units	Absolute: Watts or dBm
	Relative: Percent or dB
Display resolution	Selectable resolution of: 1.0, 0.1, 0.01 and 0.001 dB in logarithmic mode, or 1, 2, 3 and 4 significant
	digits in linear mode
Default resolution	0.01dB in logarithmic mode or three digits in linear mode

Accuracy	
Absolute accuracy	± 0.02 dB (Logarithmic) or $\pm 0.5\%$ (Linear). Please add the corresponding power sensor linearity percentage from Tables 6, 9 and 10 (for the E-Series sensors), Table 14 (for the 8480 series sensors) and Table 16 (for N8480 sensors) to assess the overall system accuracy.
Relative accuracy	± 0.04 dB (Logarithmic) or $\pm 1.0\%$ (Linear). Please add the corresponding power sensor linearity percentage from the mentioned tables above to assess the overall system accuracy.
Zero set (digital settability of zero)	Power sensor dependent (refer Table 1), this specification applies when zeroing is performed with the sensor input disconnected from the POWER REF.
Zero drift of sensors	This parameter is also called long term stability and is the change in the power meter indication over a long time (within one hour) at a constant temperature after a 24-hour warm-up of the power meter. Sensor dependent, refer to Table 1. For E9300 sensors, refer to Table 11 for complete data.

Measurement noise						
Sensor dependent, refer to	Sensor dependent, refer to Tables 1 and 2. For E9300 sensors, refer to Table 11 for complete data.					
Effects of averaging on noise	Averaging over 1 to 1024 readings is available for reducing noise. Table 1 provides the measurement noise for a particular power sensor with the number of averages set to 16 for normal mode and 32 for x2 mode. Use the "Noise Multiplier" for the appropriate mode (normal or x2) and number of averages to determine the total measurement noise value.					
	For example: For an Agilent 8481D power sensor in normal mode with the number of averages set to 4, the measurement noise is equal to: $(<45 \text{ pW} \times 2.75) = <124 \text{ pW}$					

1 mW power reference	e
Power output	1.00 mW (0.0 dBm). Factory set to ± 0.4 % traceable to the National Physical Laboratories (NPL), UK
Accuracy (for two years)	±0.4% (25 ±10 °C) ±1.2% (0 to 55 °C)
Frequency	50 MHz nominal
SWR	1.05 (typical), 1.08 (0 to 55°C)
Connector type	Type-N (f), 50 Ω

Measurement speed

Using remote interface (over the GPIB, USB or LAN), three measurement speed modes are available as shown, along with the typical maximum measurement speed for each mode.

With N1913A power meter	 Normal: 20 readings/second
	 x2: 40 readings/second
	 Fast: 400 readings/second

With N1914A power meter The measurement speed is reduced, for example, with both channels in FAST mode, the typical maximum measurement speed is 200 readings/second.

Fast mode is for Agilent E-Series power sensors only.

Maximum measurement speed is obtained using binary output in free run trigger mode.

Table 1. Power sensors zero set, zero drift and measurement noise

Model	Zero set	Zero drift ¹	Measurement noise ²
E9300A, E9301A, E9304A ³	±500 pW	<±150 pW	<700 pW
E9300B, E9301B ³	±500 nW	<±150 nW	<700 nW
E9300H, E9301H ³	±5 nW	<±1.5 nW	<7 nW
E4412A, E4413A	±50 pW	<±15 pW	<70 pW
N8481A, N8482A, N8485A, N8487A, N8486AR, N8486AQ	±25 nW	<±3 nW	<80 nW
8483A	±50 nW	<±10 nW	<110 nW
N8481B, N8482B	±50 μW	<±10 μW	<110 μW
8481D, 8485D, 8487D	±20 pW	<±4 pW	<45 pW
N8481H, N8482H	±5 μW	<±1 μW	<10 μW
R8486D, Q8486D	±30 pW	<±6 pW	<65 pW
V8486A, W8486A	±200 nW	<±40 nW	<450 nW

^{1.} Within 1 hour after zero set, at a constant temperature, after a 24-hour warm-up of the power meter.

The 8480 Series sensors in the table do not include discontinued models.

Table 2. Noise multiplier

Number of averages	1	2	4	8	16	32	64	128	256	512	1024
Noise multiplier	<i></i>	2.00	275	1.04	1	0.05	0.01	0.40	0.24	0.24	0.17
Normal mode	5.5	3.89	2.75	1.94	1 00	0.85	0.61	0.49	0.34	0.24	0.17
x2 mode	6.5	4.6	3.25	2.3	1.63	1	0.72	0.57	0.41	0.29	0.2

^{2.} The number of averages at 16 for normal mode and 32 for x2 mode, at a constant temperature, measured over a one minute interval and two standard deviations. For E-Series sensors, the measurement noise is measured within the low range. Refer to the relevant sensor manual for further information.

^{3.} Specification applies to the low power path, 15% to 75% relative humidity.

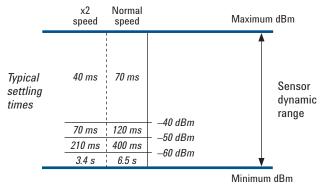
Settling time¹

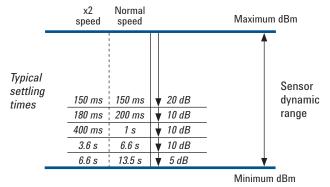
Manual filter, 10-dB decreasing power step for normal and x2 modes (not across range switch points for E-Series and N8480 Series sensors).

Table 3. Settling time

Number of averages	1	2	4	8	16	32	64	128	256	512	1024
Settling time with E-Seri	es senso	ors (s)									
Normal mode x2 mode	0.08 0.07	0.13 0.09	0.24 0.15	0.45 0.24	1.1 0.45	1.9 1.1	3.5 1.9	6.7 3.6	14 6.7	27 14	57 27
Settling time with N848	0 Series	sensors	(s)								
Normal mode x2 mode	0.15 0.15	0.2 0.18	0.3 0.22	0.5 0.35	1.1 0.55	1.9 1.1	3.4 1.9	6.6 3.5	13 6.9	27 14.5	57 33
Settling time with 8480	Series s	ensors (:	s)								
Normal mode x2 mode	0.15 0.15	0.2 0.18	0.3 0.22	0.5 0.35	1.1 0.55	1.9 1.1	3.4 1.9	6.6 3.5	13 6.9	27 14.5	57 33

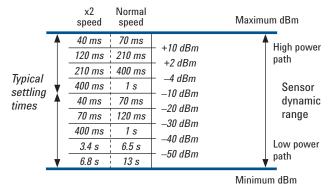
E-Series sensors In FAST mode (using free run trigger), within the range –50 dBm to +17 dBm, for a 10 dB decreasing power step, the settling time is:

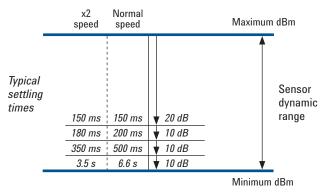

N1913A: 10 ms² N1914A: 20 ms²


^{1.} Settling time: 0 to 99% settled readings over the GPIB.

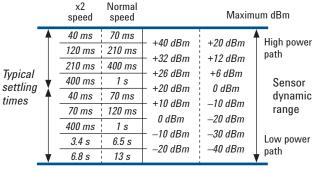
^{2.} When a power step crosses through the sensor's auto-range switch point, add 25 ms. Refer to the relevant sensor manual for switch point information.

Settling time (continued)


Auto filter, 10 dB decreasing power step for normal and X2 modes (not across the range switch points for E-Series and N8480 Series sensors).



With E-Series E4412/13A sensors


With N8480 Series sensors

With E-Series E9300A/01A/04A sensors

With 8480 Series sensors

Minimum dBm

With E-Series E9300B/01B/00H/01H sensor

Power meter functi	ons
Accessed by key entry	Either hard keys, or soft key menu, and programmable
Zero	Zeros the meter. (Power reference calibrator is switched off during zeroing.)
Cal	Calibrates the meter using internal (power reference calibrator) or external source. Reference cal factor settable from 1% to 150%, in 0.1% increments.
Frequency	Entered frequency range is used to interpolate the calibration factors table. Frequency range from 1 kHz to 999.9 GHz. Also settable in 1 kHz steps.
Cal factor	Sets the calibration factor for the meter. Range: 1% to 150%, in 0.1% increments.
Relative	Displays all successive measurements relative to the last displayed value
Offset	Allows power measurements to be offset by $-100~\mathrm{dB}$ to $+100~\mathrm{dB}$, settable in 0.001 dB increments, to compensate for external loss or gain
Save/recall	Store up to 10 instrument states via the save/recall menu
dBm/W	Selectable units of either Watts or dBm in absolute power; or percent or dB for relative measurements
Filter (averaging)	Selectable from 1 to 1024. Auto-averaging provides automatic noise compensation.
Duty cycle	Duty cycle values between 0.001% to 99.999%, in 0.001% increments, can be entered to display a peak power representation of measured power. The following equation is used to calculate the displayed peak power value: peak power = measured power/duty cycle.
Sensor cal tables	Selects cal factor versus frequency tables corresponding to specified sensors
Limits	High and low limits can be set in the range -150.000 dBm to +230.000 dBm, in 0.001 dBm increments
Preset default values	dBm mode, rel off, power reference off, duty cycle off, offset off, frequency 50 MHz, AUTO average, free run, AUTO range (for E-Series sensors and N8480 Series)
Display	Color display with selectable single and split screen formats are available. A quasi-analog display is available for peaking measurements. The dual channel power meter can simultaneously display any two configurations of A, B, A/B, B/A, A-B, B-A and relative. With the optional USB ports, additional dual channel (C & D), adds up to total 4-channels measurement display.

Power meter ge	Power meter general specifications					
Dimensions		o .	exclude front and rear protrusions: x 348.3 mm D (8.5 in x 3.5 in x 13.7 in)			
Weight	Model N1913A N1914A	Net 3.6 kg (8.0 lb) 3.7 kg (8.2 lb)	Shipping 8.2 kg (18.1 lb) 8.2 kg (18.3 lb)			

Rear panel connectors					
Recorder outputs	Analog 0 to 1 Volt, 1 k Ω output impedance, BNC connector. N1914A recorder outputs are dedicated to channel A and channel B.				
GPIB, USB 2.0 and 10/100BaseT LAN	Interfaces to allow communication with an external controller				
Trigger Input (optional)	Input has TTL compatible logic levels and uses a BNC connector. High: >2.4 V Low: <0.7 V				
Trigger Output (optional)	Output provides TTL compatible logic levels and uses a BNC connector. High: >2.4 V Low: <0.7 V				
Ground	Binding post, accepts 4 mm plug or bare wire connection				
USB Host (options)	USB ports which connects to U2000 series USB power sensors				
VGA Out (options)	Standard 15-pin VGA connector, allows connection of external VGA monitor				

Line power		
Input voltage range	90 to 264 VAC, automatic selection	
Input frequency range	47 to 63 Hz and 400 Hz @ 110 Vac	
Power requirement	75 VA (50 Watts)	

Battery option operational characteristics ¹			
The following information describes characteristic performance based at a temperature of 25 °C unless otherwise noted.			
Typical operating time	Up to 6 hours with LCD backlight on; up to 7.5 hours with LCD backlight off (N1913A power meter).		
Charge time	Approximately, 2.5 hours to charge fully from an empty state. Power meter is operational whilst charging.		
Battery type	Lithium-ion (Li-ion)		
Battery storage temperature	–20 °C to 60 °C, ≤80 % RH		

Environmental characteristics			
Electromagnetic Complies with the essential requirements of EMC Directive (2004/108/EC) as follows: • IEC61326- 1:2005 / EN61326- 1:2006 • CISPR11:2003 / EN55011:2007 (Group 1, Class A) The product also meets the following EMC standards: • Canada: ICES/NMB- 001:2004 • Australia/New Zealand: AS/NZS CISPR 11:2004			
Product safety	This product conforms to the requirements of the following safety standards: • IEC 61010- 1:2001 / EN 61010- 1:2001 • CAN/CSA- C22.2 No.61010- 1- 04 • ANSI/UL61010- 1:2004		
Low Voltage Directive	This product conforms to the requirements of European Council Directive "2006/95/EC"		

Operating environment		
Temperature	0 °C to 55 °C	
Maximum Humidity	95% at 40 °C (non-condensing)	
Minimum Humidity	15% at 40 °C (non-condensing)	
Maximum Altitude	4,600 meters (15,000 feet)	

Storage conditions	
Non-operating storage temperature	-40 °C to +70 °C
Non-operating maximum humidity	90% at 65 °C (non-condensing)
Non-operating maximum altitude	4,600 meters (15,000 feet)

Remote programming			
Interface GPIB, USB and LAN interfaces operates to IEEE 488.2 standard			
Command language	SCPI standard interface commands. Code-compatible with legacy E4418B/9B EPM Series, 436A, 437B and 438A power meters (43X compatibility only with option N191xA-200).		
GPIB compatibility	SH1, AH1, T6, TE0, L4, LE0, SR1, RL1, PP1, DC1, DT1, C0		

^{1.} Characteristics describe product performance that is useful in the application of the product, but is not covered by the product warranty.

N1913A/14A EPM Series Power Meters Ordering Information

Power meters

N1913A

Single-channel average power meter

N1914A

Dual-channel average power meter

Standard-shipped accessories

Power cord

Power sensor cable, 1.5 m (5 ft) (One per N1913A, two per N1914A)

USB cable Type A to Mini-B, 6 ft

Hard copy English language User's Guide and Installation Guide

Product CD-ROM (contains English and localized User's Guide and Programming Guide)

Agilent IO Libraries Suite CD-ROM

Calibration certificate

Warranty

Standard 1-year, return-to-Agilent warranty and service plan for N1913A/N1914A

3 months for standard-shipped accessories

Options

Power meter configurations			
N191xA-102	Single/dual-channel average power meter, battery		
N191xA-103	Single/dual-channel average power meter, battery, two rear USB ports		
N191xA-104	Single/dual-channel average power meter, VGA		
N191xA-105	Single/dual-channel average power meter, battery, one front and one rear USB port, VGA		
N191xA-106	Single/dual-channel average power meter, one front and one rear USB port		
N191xA-107	Single/dual-channel average power meter, external trigger IN/OUT		
N191xA-108	Parallel rear panel sensor input connectors and front panel reference calibrator connector, two rear USB ports		
N191xA-109	Parallel rear panel sensor input connectors and rear panel reference calibrator connector, two rear USB ports		
N1913A-200	436A and 437B code compatibility		
N1914A-200	438A code compatibility		
N6901A-1FP	Code compatibility (436A, 437A, 438A) standalone upgrade for N1913A		
N6902A-1FP	Code compatibility (436A, 437A, 438A) standalone upgrade for N1914A		

Power sensor cables		
11730A	Power sensor cable: 1.5 m/5 ft	
11730B	Power sensor cable: 3.0 m/10 ft	
11730C	Power sensor cable: 6.1 m/20 ft	
11730D	Power sensor cable: 15.2 m/50 ft	
11730E	Power sensor cable: 30.5 m/100 ft	

Other accessories		
34131A	Transit case	
34141A	Soft carrying case	
34161A	Accessory pouch	
N191xA-300	Spare battery pack	
N191xA-908	Rackmount kit for one instrument	
N191xA-909	Rackmount kit for two instruments	

Warranty	
R-50C-011-3	Agilent Calibration Upfront Plan 3-year coverage
R-50C-011-5	Agilent Calibration Upfront Plan 5-year coverage
R-51B-001-3C	1 year Return-to-Agilent warranty extended to 3 years
R-51B-001-5C	1 year Return-to-Agilent warranty extended to 5 years

N1913A/14A EPM Series Power Meters Ordering Information (continued)

Options (continued)

GPIB connectivity products			
82357B	USB/GPIB converter		
10833x	GPIB cables: 10833D (0.5 m), 10833A (1 m), 10833B (2 m), 10833C (4 m), 10833F (6 m), 10833G (8 m)		
Documentation			
N191xA-0B0	Delete hard copy English language User's Guide		
N191xA-0BF	Hard copy English language Programming Guide		
N191xA-ABA	Additional hard copy English language User's Guide and Programming Guide		
N191xA-ABJ	Hard copy Japanese localization User's Guide and Programming Guide		

E-Series Power Sensor Specifications

The E-Series of power sensors have their calibration factors stored in EEPROM and operate over a wide dynamic range. They are designed for use with the EPM Series of power meters and two classes of sensors are available:

- · CW power sensors (E4412A and E4413A)
- · Average power sensors (E9300 sensors)

E-Series CW Power Sensor Specifications

Widest dynamic range: 100 pW to 100 mW (-70 dBm to +20 dBm)

Table 4. E4410 Series max SWR specification

Model	Maximum SWR	Maximum SWR	Maximum power	Connector type
E 4412A	10 MHz to 18 GHz	*10 MHz to <30 MHz: 1.22 30 MHz to <2 GHz: 1.15 2 GHz to <6 GHz: 1.17 6 GHz to <11 GHz:1.2 11 GHz to <18 GHz: 1.27	200 mW (+23 dBm)	Type-N (m)
E4413A	50 MHz to 26.5 GHz	50 MHz to <100 MHz: 1.21 100 MHz to <8 GHz: 1.19 8 GHz to <18 GHz: 1.21 18 GHz to 26.5 GHz: 1.26	200 mW (+23 dBm)	APC-3.5 mm (m)

^{*} Applies to sensors with serial prefix US 3848 or greater

E-Series CW Power Sensor Specifications (continued)

Calibration factor (CF) and reflection coefficient (Rho)

Calibration factor and reflection coefficient data are provided at 1 GHz increments on a data sheet included with the power sensor. This data is unique to each sensor. If you have more than one sensor, match the serial number on the data sheet with the serial number on the power sensor you are using. The CF corrects for the frequency response of the sensor. The EPM power meter automatically reads the CF data stored in the sensor and uses it to make the corrections. For power levels greater than 0 dBm, add 0.5%/dB to the calibration factor uncertainty specification.

Reflection coefficient (Rho) relates to the SWR according to the following formula:

SWR = 1 + Rho/1 - Rho.

Maximum uncertainties of the CF data are listed in Table 5a, for the E4412A power sensor, and Table 5b for the E4413A power sensor. The uncertainty analysis for the calibration of the sensors was done in accordance with the ISO/TAG4 Guide. The uncertainty data reported on the calibration certificate is the expanded uncertainty with a 95% confidence level and a coverage factor of 2.

Table 5a: E4412A calibration factor uncertainty at 1 mW (0 dBm)

Frequency	Uncertainty*(%)
10 MHz	1.8
30 MHz	1.8
50 MHz	Reference
100 MHz	1.8
1.0 GHz	1.8
2.0 GHz	2.4
4.0 GHz	2.4
6.0 GHz	2.4
8.0 GHz	2.4
10.0 GHz	2.4
11.0 GHz	2.4
12.0 GHz	2.4
14.0 GHz	2.4
16.0 GHz	2.6
18.0 GHz	2.6

Table 5b: E4413A calibration factor uncertainty at 1 mW (0 dBm)

Frequency	Uncertainty*(%)
50 MHz	Reference
100 MHz	1.8
1.0 GHz	1.8
2.0 GHz	2.4
4.0 GHz	2.4
6.0 GHz	2.4
8.0 GHz	2.4
10.0 GHz	2.6
11.0 GHz	2.6
12.0 GHz	2.8
14.0 GHz	2.8
16.0 GHz	2.8
17.0 GHz	2.8
18.0 GHz	2.8
20.0 GHz	3.0
24.0 GHz	3.0
26.0 GHz	3.0
28.0 GHz	3.0

E-Series CW Power Sensor Specifications (continued)

Power linearity

Table 6. E4410 Series power linearity specification

Power	Temperature (25 °C ±5 °C)	Temperature (0 °C to 55 °C)
100 pW to 10 mW (-70 dBm to +10 dBm)	±3%	±7%
10 mW to 100 mW (+10 dBm to +20 dBm)	±4.5%	±10%

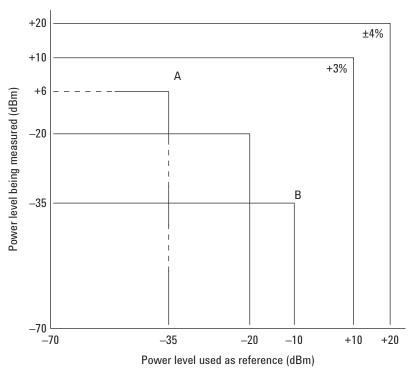


Figure 1. Relative mode power measurement linearity with EPM Series power meter/E-Series CW power sensor at 25 °C \pm 5 °C (typical)

The chart in Figure 1 shows the typical uncertainty in making a relative power measurement, using the same power meter channel and the same power sensor to obtain the reference and the measured values. Example A illustrates a relative gain (amplifier measurement). Example B illustrates a relative loss (insertion loss measurement). This chart assumes negligible change in frequency and mismatch occur when transitioning from the power level used as the reference to the power level being measured.

Example A:

 $P = 10(P)/10 \times 1 \text{ mW}$

 $P = 10.6/10 \times 1 \text{ mW}$

P = 3.98 mW

 $3\% \times 3.98 \text{ mW} = 119.4 \mu\text{W}$

Example B:

P = 10 (P)/10 x1 mW

 $P = 10 - 35/10 \times 1 \text{ mW}$

P = 316 nW

3% x 316 nW = 9.48 nW

where

P = power in Watts

and

(P) = power in dBm

E-Series E9300 Average Power Sensor Specifications

The E-Series E9300 wide dynamic range, average power sensors are designed for use with the EPM family of power meters. These specifications are valid ONLY after proper calibration of the power meter and apply for CW signals unless otherwise stated.

Specifications apply over the temperature range 0 °C to 55 °C unless otherwise stated, and specifications quoted over the temperature range 25 °C ± 10 °C, conform to the standard environmental test conditions as defined in TIA/EIA/IS-97-A and TIA/EIA/IS-98-A.

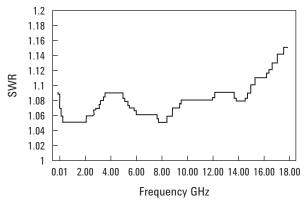

The E-Series E9300 power sensors have two independent measurement paths (high and low power paths) as shown in Table 7.

Table 7. E9300 Series two-path specification

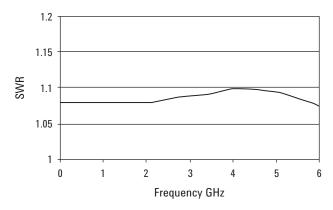
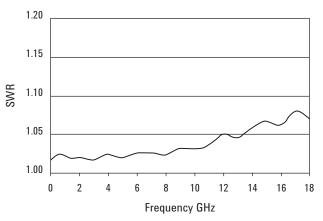
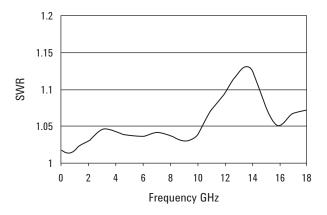

	"A" suffix sensors	"B" suffix sensors	"H" suffix sensors
High power path	-10 to +20 dBm	+20 to +44 dBm	0 to +30 dBm
Low power path	−60 to −10 dBm	-30 to +20 dBm	-50 to 0 dBm

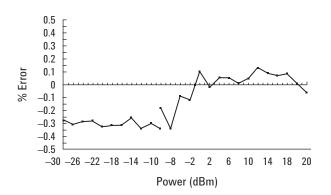
Table 8. E9300 Series sensors specification


NA 1 1	Frequency	Maximum SWR	Maximum SWR		Connecto
Model	range	(25 °C ± 10 °C)	(0 to 55 °C)	Maximum power	type
–60 dBn	n to +20 dBm wide	e dynamic range sensor	S		
E9300A	10 MHz to 18 GHz	10 MHz to 30 MHz: 1.15 30 MHz to 2 GHz: 1.13 2 GHz to 14 GHz: 1.19 14 GHz to 16 GHz: 1.22 16 GHz to 18 GHz: 1.26	10 MHz to 30 MHz: 1.21 30 MHz to 2 GHz: 1.15 2 GHz to 14 GHz: 1.20 14 GHz to 16 GHz: 1.23 16 GHz to 18 GHz: 1.27	+25 dBm (320 mW) average; +33 dBm peak (2 W) (< 10 μsec)	Type-N (m)
E9301A	10 MHz to 6 GHz	10 MHz to 30 GHz: 1.15 30 MHz to 2 GHz: 1.13 2 GHz to 6 GHz: 1.19	10 MHz to 30 MHz: 1.21 30 MHz to 2 GHz: 1.15 2 GHz to 6 GHz: 1.20	+25 dBm (320 mW) average; +33 dBm peak (2 W) (< 10 µsec)	Type-N (m)
E9304A	9 kHz to 6 GHz	9 kHz to 2 GHz: 1.13 2 GHz to 6 GHz: 1.19	9 kHz to 2 GHz: 1.15 2 GHz to 6 GHz: 1.20	+25 dBm (320 mW) average; +33 dBm peak (2 W) (< 10 µsec)	Type-N (m)
-30 dBm	n to +44 dBm wide	e dynamic range sensor	S		
E9300B	10 MHz to 18 GHz	10 MHz to 8 GHz: 1.12 8 GHz to 12.4 GHz: 1.17 12.4 GHz to 18 GHz: 1.24	10 MHz to 8 GHz: 1.14 8 GHz to 12.4 GHz: 1.18 12.4 GHz to 18 GHz: 1.25	0 to 35 °C: 30 W avg 35 to 55 °C: 25 W avg < 6 GHz: 500 W pk > 6 GHz: 125 W pk 500 W.µS per pulse	Type-N (m)
E9301B	10 MHz to 6 GHz	10 MHz to 6 GHz: 1.12	10 MHz to 6 GHz: 1.14	0 to 35 °C: 30 W avg 35 to 55 °C: 25 W avg < 6 GHz: 500 W pk > 6 GHz: 125 W pk 500 W.µS per pulse	Type-N (m)
_50 dBm	n to +30 dBm wide	e dynamic range sensor	S		
E9300H	10 MHz to 18 GHz	10 MHz to 8 GHz: 1.15 8 GHz to 12.4 GHz: 1.25 12.4 GHz to 18 GHz: 1.28	10 MHz to 8 GHz: 1.17 8 GHz to 12.4 GHz: 1.26 12.4 GHz to 18 GHz: 1.29	3.16 W avg 100 W pk 100 W.µS per pulse	Type-N (m)
E9301H	10 MHz to 6 GHz	10 MHz to 6 GHz: 1.15	10 MHz to 6 GHz: 1.17	3.16 W avg 100 W pk 100 W.µS per pulse	Type-N (m)


Typical SWR, 10 MHz to 18 GHz (25 °C \pm 10 °C) for E9300A and E9301A sensor

Typical SWR, 9 kHz to 6 GHz (25 °C \pm 10 °C) for E9304A sensors

Typical SWR, 10 MHz to 18 GHz (25 °C ± 10 °C) for E9300B and E9301B sensors


Typical SWR, 10 MHz to 18 GHz (25 °C \pm 10 °C) for E9300H and E9301H sensors

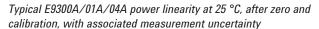
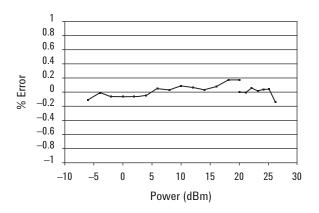

Power linearity*

Table 9. E9300 Series power linearity (after zero and cal at ambient environmental conditions) sensor


Sensor	Power	Linearity (25 °C ±10 °C)	Linearity (0 °C to 55 °C)
E9300A, E9301A, E9304A	-60 to −10 dBm	±3.0%	±3.5%
	-10 to 0 dBm	±2.5%	±3.0%
	0 to +20 dBm	±2.0%	±2.5%
E9300B, E9301B	-30 to +20 dBm	±3.5%	±4.0%
	+20 to +30 dBm	±3.0%	±3.5%
	+30 to +44 dBm	±2.5%	±3.0%
E9300H, E9301H	-50 to 0 dBm	±4.0%	±5.0%
	0 to +10 dBm	±3.5%	±4.0%
	+10 to +30 dBm	±3.0%	±3.5%

^{*} After zero and calibration at ambient environmental conditions

Power range	Measurement uncertainty
−30 to −20 dBm	±0.9%
−20 to −10 dBm	±0.8%
-10 to 0 dBm	±0.65%
0 to +10 dBm	±0.55%
+10 to +20 dBm	±0.45%

Typical E9300B/01B power linearity at 25 °C, after zero and calibration, with associated measurement uncertainty

Power range	Measurement uncertainty
-6 to 0 dBm	± 0.65%
0 to +10 dBm	± 0.55%
+10 to +20 dBm	± 0.45%
+20 to +26 dBm	± 0.31%

0.8 0.6 0.4 0.2 0 -0.2-0.4-0.6-0.8-10 10 25 30 -5 15 20 Power (dBm)

Typical E9300H/01H power linearity at 25 °C, after zero and calibration, with associated measurement uncertainty

Power range	Measurement uncertainty
−26 to −20 dBm	± 0.9%
−20 to −10 dBm	± 0.8%
-10 to 0 dBm	± 0.65%
0 to +10 dBm	± 0.55%
+10 to +20 dBm	± 0.45%
+20 to +26 dBm	± 0.31%

Effects of change in temperature on linearity

Note: If the temperature changes after calibration and you choose not to re-calibrate the sensor, the following additional power linearity error should be added to the linearity specs in Table 9.

For small changes in temperature:

The typical maximum additional power linearity error due to small temperature change after calibration is $\pm 0.15\%/^{\circ}C$ (valid after zeroing the sensor).

For large changes in temperature:

Refer to Table 10.

Table 10. Typical maximum additional power linearity error due to temperature change (valid after zeroing the sensor)

Sensor	Power	Additional power linearity error (25 °C ± 10 °C)	Additional power linearity error (0 °C to 55 °C)
E9300A, E9301A, E9304A	–60 to –10 dBm	±1.5%	±2.0%
	–10 to 0 dBm	±1.5%	±2.5%
	0 to +20 dBm	±1.5%	±2.0%
E9300B, E9301B	-30 to +20 dBm	±1.5%	±2.0%
	+20 to +30 dBm	±1.5%	±2.5%
	+30 to +44 dBm	±1.5%	±2.0%
E9300H, E9301H	-50 to 0 dBm	±1.5%	±2.0%
	0 to +10 dBm	±1.5%	±2.5%
	+10 to +30 dBm	±1.5%	±2.0%

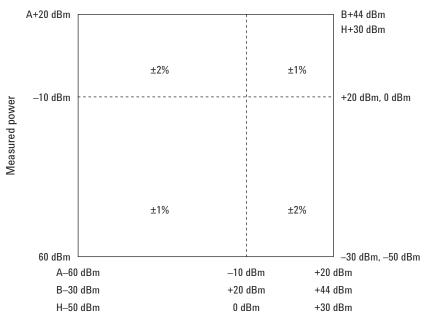


Figure 2. Relative mode power measurement linearity with an EPM Series power meter, at 25 °C ± 10 °C (typical)

Figure 2 shows the typical uncertainty in making a relative power measurement, using the same power meter channel and same power sensor to obtain the reference and the measured values, and assumes that negligible change in frequency and mismatch error occur when transitioning from the power level used as the reference to the power level being measured.

Switch point data

The E9300 power sensors have two paths as shown in Table 7. The power meter automatically selects the proper power level path. To avoid unnecessary switching when the power level is near the switch point, switching point hysteresis has been added.

E9300 "A" suffix sensors example:

Hysteresis causes the low power path to remain selected until approximately -9.5 dBm as the power level is increased, above this power the high power path will be selected. The high power path will remain selected until approximately -10.5 dBm is reached as the signal level decreases, below this power the low power path will be selected.

Switching point linearity:

Typically = $\pm 0.5\%$ (= ± 0.02 dB)

Switching point hysteresis:

0.5 dB typical

Table 11. E9300 Series sensor switch point specification

E9300 sensor suffix	Conditions ¹	Zero set	Zero drift ²	Measurement noise ³
	Lower power path (15% to 75% RH)	500 pW	150 pW	700 pW
۸	Lower power path (75% to 95% RH)	500 pW	4,000 pW	700 pW
Α	High power path (15% to 75% RH)	500 nW	150 nW	500 nW
	High power path (75% to 95% RH)	500 nW	3000 nW	500 nW
	Lower power path (15% to 75% RH)	500 nW	150 nW	700 nW
В	Lower power path (75% to 95% RH)	500 nW	4 μW	700 nW
D	High power path (15% to 75% RH)	500 μW	150 μW	500 μW
	High power path (75% to 95% RH)	500 μW	3000 mW	500 μW
	Lower power path (15% to 75% RH)	5 nW	1.5 nW	7 nW
	Lower power path (75% to 95% RH)	5 nW	40 μW	7 nW
Н	High power path (15% to 75% RH)	5 μW	1.5 μW	5 μW
	High power path (75% to 95% RH)	5 μW	30 mW	5 μW

^{1.} RH is the abbreviation for relative humidity.

^{2.} Within 1 hour after zero set, at a constant temperature, after a 24-hour warm-up of the power meter with power sensor connected.

^{3.} The number of averages at 16 for normal mode and 32 for x2 mode, at a constant temperature, measured over a one minute interval and two standard deviations.

Calibration factor (CF) and reflection coefficient (Rho)

Calibration factor and reflection coefficient data are provided at frequency intervals on a data sheet included with the power sensor. This data is unique to each sensor. If you have more than one sensor, match the serial number on the certificate of calibration (CoC) with the serial number on the power sensor you are using. The CF corrects for the frequency response of the sensor. The EPM Series power meter automatically reads the CF data stored in the sensor and uses it to make the corrections.

Reflection coefficient (Rho) relates to the SWR according to the following formula:

SWR = (1 + Rho)/(1 - Rho)

Maximum uncertainties of the CF data are listed in Tables 12a and 12b. As the E-Series E9300 power sensors have two independent measurement paths (high and low power paths), there are two calibration factor uncertainty tables. The uncertainty analysis for the calibration of the sensors was done in accordance with the ISO Guide. The uncertainty data reported on the calibration certificate is the expanded uncertainty with a 95% confidence level and a coverage factor of 2.

Table 12a. Calibration factor uncertainties (low power path)

Frequency	Uncertainty (%) (25 °C ±10 °C)	Uncertainty (%) (0 °C to 55 °C)
10 MHz to 30 MHz	± 1.8%	±2.2%
30 MHz to 500 MHz (E9304A: 9 kHz to 500 MHz)	±1.6%	±2.0%
500 MHz to 1.2 GHz	±1.8%	±2.5%
1.2 GHz to 6 GHz	±1.7%	±2.0%
6 GHz to 14 GHz	±1.8%	±2.0%
14 GHz to 18 GHz	± 2.0 %	±2.2%

Table 12b. Calibration factor uncertainties (high power path)

Frequency	Uncertainty (%) (25 °C ±10 °C)	Uncertainty (%) (0 °C to 55 °C)
10 MHz to 30 MHz	± 2.1%	±4.0%
30 MHz to 500 MHz (E9304A: 9 kHz to 500 MHz)	±1.8%	±3.0%
500 MHz to 1.2 GHz	±2.3%	±4.0%
1.2 GHz to 6 GHz	±1.8%	±2.1%
6 GHz to 14 GHz	±1.9%	±2.3%
14 GHz to 18 GHz	± 2.2 %	±3.3%

848xD Series Diode and 8483A Thermocouple Power Sensor Specifications

Calibration factor uncertainties

These thermocouple and diode power sensors provide extraordinary accuracy, stability, and SWR over a wide range of frequencies (100 kHz to 110 GHz) and power levels (-70 dBm to +20 dBm).

Table 13. Typical root sum of squares (rss) uncertainty on the calibration factor data printed on the power sensor

Frequency (GHz)	8483A	8481D	8485D	8487D	R8486D	Q8486D
0.0001	1.3	_	_	_	_	_
0.0003	1.2	_	_	_	_	_
0.001	1.1	_	_	_	_	_
0.003	1.2	_	_	_	_	_
0.01	1.2	_	_	_	_	_
0.03	1.2	_	_	_	_	_
0.05	1.2	_	_	_	_	_
0.1	1.2	_	_	_	_	_
0.3	1.2	_	_	_	_	_
1	1.2	0.8	1.4	1.3	_	_
2	1.2	0.8	1.4	1.3	_	_
4	_	0.8	1.7	1.4	_	_
6	_	0.9	1.7	1.4	_	_
8	_	1.0	1.7	1.4	_	_
10	_	1.1	1.9	1.5	_	_
12	_	1.2	1.9	1.5	_	_
14	_	1.1	2.0	1.6	_	_
16	_	1.5	2.1	1.7	_	_
18	_	1.7	2.2	1.7	_	_
22	_	_	2.7	1.9	_	_
26.5	_	_	2.8	2.2	3.0	_
28	_	_	2.9*	2.3	3.2	_
30	_	_	3.2*	2.4	3.0	_
33	_	_	3.3*	2.6	3.0	4.2
34.5	_	_	_	2.6	3.0	4.2
37	_	_	_	2.7	3.0	4.2
40	-	_	_	3.0	-	4.2
42	_	_	_	3.2	_	4.9
44	_	_	_	2.5	-	5.1
46	-	_	_	3.8	_	5.5
48	_	_	_	3.8	_	5.8
50	_	_	_	5.0	_	6.2

^{*} These uncertainties only apply to Option 033.

^{**} The 8480 Series sensors in the table do not include discontinued models.

848xD Series Diode and 8483A Thermocouple Power Sensor Specifications *(continued)*

Maximum SWR and power linearity

Table 14. 8480 Series maximum SWR and power linearity

Model	Frequency range	Maximum SWR	Power linearity ¹	Maximum power	Connector type	Weight
		to 100 mW (–30 dBm t		power	турс	vveignt
8483A (75-Ohm)	100 kHz to 2 GHz	100 kHz to 600 kHz: 1.80 600 kHz to 2 GHz: 1.18	+10 dBm to +20 dBm: (±3%)	300 mW avg, 10 W pk	Type-N (m) 75 Ohm	Net: 0.2 kg (0.38 lb) Shipping: 0.5 kg (1.0 lb)
V8486A	50 GHz to 75 GHz	50 GHz to 75 GHz: 1.06	-30 dBm to +10 dBm: (±1%) +10 dBm to +20 dBm: (±2%)	200 mW avg, 40 W pk (10.µs per pulse, 0.5% duty cycle)	Waveguide flange UG-385/U	Net: 0.4 kg (0.9 lb) Shipping: 1 kg (2.1 lb)
W8486A	75 GHz to 110 GHz	75 GHz to 110 GHz: 1.08	(±2%)	200 mW avg, 40 W pk (10.µs per pulse, 0.5% duty cycle)	Waveguide flange UG-387/U	Net: 0.4 kg (0.9 lb) Shipping: 1 kg (2.1 lb)
High sens	itivity sensors,	100 pW to 10 μW (–70	0 dBm to -20 dBm	n)		
8481D ²	10 MHz to 18 GHz	10 MHz to 30 MHz: 1.40 30 MHz to 3 GHz: 1.15 4 GHz to 10 GHz: 1.20 10 GHz to 15 GHz: 1.30 15 GHz to 18 GHz: 1.35	−30 dBm to −20 dBm: (±1%)	100 mW avg, 100 mW pk	Type-N (m)	Net: 0.16 kg (0.37 lb) Shipping: 0.9 kg (2.0 lb)
8485D ²	50 MHz to 26.5 GHz	0.05 GHz to 0.1 GHz: 1.19 0.1 GHz to 4 GHz: 1.15 4 GHz to 12 GHz: 1.19 12 GHz to 18 GHz: 1.25 18 GHz to 26.5 GHz: 1.29	-30 dBm to -20 dBm: (±2%)	100 mW avg, 100 mW pk	APC-3.5 mm (m)	Net: 0.2 kg (.38 lb) Shipping: 0.5 kg (1.0 lb)
Option 8485D-033	50 MHz to 33 GHz	26.5 GHz to 33 GHz: 1.35	-30 dBm to -20 dBm: (±2%)	100 mW avg, 100 mW pk	APC-3.5 mm (m)	Net: 0.2 kg (0.38 lb) Shipping: 0.5 kg (1.0 lb)
8487D ²	50 kHz to 50 GHz	0.05 GHz to 0.1 GHz: 1.19 0.1 GHz to 4 GHz: 1.15 2 GHz to 12.4 GHz: 1.20 12.4 GHz to 18 GHz: 1.29 18 GHz to 34 GHz: 1.37 34 GHz to 40 GHz: 1.61 40 GHz to 50 GHz: 1.89	–30 dBm to –20 dBm: (±2%)	100 mW avg, 100 mW pk 10 W.µs per pulse	2.4 mm (m)	Net: 0.2 kg (0.38 lb) Shipping: 0.5 kg (1.0 lb)
R8486D ²	26.5 GHz to 40 GHz	26.5 GHz to 40 GHz: 1.40	-30 dBm to -25 dBm: (±3%) -25 dBm to -20 dBm: (±5%)	100 mW avg, or pk 40 V dc max	Waveguide flange UG-599/U	Net: 0.26 kg (0.53 lb) Shipping: 0.66 kg (1.3 lb)
Q8486D ²	33 GHz to 50 GHz	33 GHz to 50 GHz: 1.40	-30 dBm to -25 dBm: (±3%) -25 dBm to -20 dBm: (±5%)	100 mW avg, or pk 40 V dc max	Waveguide flange UG-383/U	Net: 0.26 kg (0.53 lb) Shipping: 0.66 kg (1.3 lb)

^{1.} Negligible deviation except for those power ranges noted.

^{*} The 8480 Series sensors in the table do not include discontinued models.

^{2.} Includes 11708A 30 dB attenuator for calibrating against 0 dBm, 50 MHz power reference. The 11708A is factory set to 30 dB ± 0.05 dB at 50 MHz, traceable to NIST. SWR < 1.05 at 50 MHz.

N8480 Series Thermocouple Power Sensor Specifications

The N8480 Series power sensors (excluding Option CFT) measure power levels from –35 dBm to +44 dBm (316 nW to 25.1 W), at frequencies from 100 kHz to 50 GHz and have two independent power measurement range (upper and lower range).

Meanwhile, the N8480 sensors with Option CFT only measure power levels from -30 dBm to +44 dBm (1 μW to 25.1 W) in single range. Similiar to the E-Series power sensors, the N8480 Series power sensors are also equipped with EEPROM to store sensor's characteristics such as model number, serial number, linearity, temperature compensation, calibration factor, and so forth.

This feature ensures the correct calibration data is applied by any compatible power meter connected with N8480 Series power sensor, and to ensure the accuracy of the measurements.

Calibration factor uncertainties

Table 15. N8480 Series calibration factor uncertainty at 25 °C ± 3 °C

Frequency	N8481A	N8481B	N8481H	N8482A	N8482B	N8482H	N8485A	N8487A	N8486AR	N8486AQ
100 kHz to 10 MHz	-	-	-	0.91	1.48	0.89	_	_	_	_
10 MHz to 30 MHz	0.82	1.42	0.77	0.78	1.43	0.79	0.82	_	_	_
30 MHz to 500 MHz	0.77	1.48	0.89	0.77	1.49	0.89	1.24	1.33	_	_
500 MHz to 1.2 GHz	0.78	1.48	0.89	0.78	1.49	0.89	1.26	1.35	_	_
1.2 GHz to 6 GHz	0.91	1.58	1.06	0.89	1.56	1.02	1.35	1.41	_	_
6 GHz to 14 GHz	1.26	1.77	1.46	_	_	_	1.66	1.61	_	_
14 GHz to 18 GHz	1.59	1.92	1.73	_	_	_	1.83	1.73	_	_
18 GHz to 26.5 GHz	-	-	-	_	_	_	2.67	2.26	_	_
26.5 GHz to 33 GHz	-	-	-	_	_	_	3.32	2.58	2.68	-
33 GHz to 34 GHz	-	-	-	_	_	_	_	2.80	3.19	3.14
34 GHz to 35 GHz	-	-	-	_	_	_	_	2.80	3.19	3.40
35 GHz to 40 GHz	-	-	-	-	_	_	_	2.80	3.19	3.14
40 GHz to 45 GHz	-	-	-	-	-	-	-	3.66	-	3.19
45 GHz to 50 GHz	-	-	-	-	-	-	-	4.23	-	3.26

N8480 Series Thermocouple Power Sensor Specifications (continued)

Maximum SWR and power linearity for standard N8480 Series power sensors

Table 16. N8480 Series maximum SWR and power linearity

	Frequency	Maximum	Power	Maximum	Connector	
Model	range	SWR ¹	linearity ^{1, 2}	power	type	Weight
100 mW :	sensors. Power	range ³ : 316 nW to 100) mW (-35 dBm t	o +20 dBm)		
N8481A	10 MHz to	10 MHz to 30 MHz: 1.37	–1 dBm to	+25 dBm	Type-N (m)	Net: 0.181 kg (0.40 lb)
	18 GHz	30 MHz to 50 MHz: 1.14	+15 dBm (±0.52%)	15 W/2 μs		Shipping: 0.90 kg
		50 MHz to 2 GHz: 1.08	+15 dBm to			(1.98 lb)
		2 GHz to 12.4 GHz: 1.16	+20 dBm (±0.80%)			
N104004	400 111	12.4 GHz to 18 GHz: 1.23	4.15	05.10	- N/)	N . 0 404 L . (0 40 H)
N8482A	100 kHz to	100 kHz to 300 kHz: 1.54	-1 dBm to	+25 dBm	Type-N (m)	Net: 0.181 kg (0.40 lb)
	6 GHz	300 kHz to 1 MHz: 1.17 1 MHz to 2 GHz: 1.06	+15 dBm (±0.52%)	15 W/2 μs		Shipping: 0.90 kg
		2 GHz to 6 GHz: 1.00	+15 dBm to +20 dBm (±0.80%)			(1.98 lb)
N8485A	10 MHz to	10 MHz to 50 MHz: 1.33	-1 dBm to	+25 dBm	APC-3.5 mm	Net: 0.183 kg (0.40 lb)
110 100/1	26.5 GHz	50 MHz to 100 MHz: 1.08	+15 dBm (±0.52%)	15 W/2 μs	(m)	Shipping: 0.90 kg
	20.0 0.12	100 MHz to 2 GHz: 1.05	+15 dBm to		()	(1.98 lb)
		2 GHz to 12.4 GHz: 1.14	+20 dBm (±0.80%)			(
		12.4 GHz to 18 GHz: 1.19	,			
		18 GHz to 26.5 GHz: 1.26				
N8485A	10 MHz to	26.5 GHz to 33 GHz: 1.32	-1 dBm to	+25 dBm	APC-3.5 mm	Net: 0.183 kg (0.40 lb)
Option 033	33 GHz		+15 dBm (±0.52%)	15 W/2 μs	(m)	Shipping: 0.90 kg
			+15 dBm to			(1.98 lb)
NIO 4 O 7 A	FO MUL- 4-	FO MIL- 4- 100 MIL- 1 00	+20 dBm (±0.80%)	, 2F JD	2.4 ()	N - 4: 0 1 F 4 I /0 2 4 I I - \
N8487A	50 MHz to 50 GHz	50 MHz to 100 MHz: 1.08 100 MHz to 2 GHz: 1.05	-1 dBm to +15 dBm (±0.52%)	+25 dBm 15 W/2 μs	2.4 mm (m)	Net: 0.154 kg (0.34 lb) Shipping: 0.874 kg
	30 GHZ	2 GHz to 12.4 GHz: 1.10	+15 dBm (±0.32%)	15 W/ Z μS		(1.92 lb)
		12.4 GHz to 18 GHz: 1.16	+20 dBm (±0.80%)			(1.32 10)
		18 GHz to 26.5 GHz: 1.22	· 20 dBiii (±0.0070)			
		26.5 GHz to 40 GHz: 1.30				
		40 GHz to 50 GHz: 1.34				
N8486AR	26.5 GHz to	26.5 GHz to 40 GHz: 1.40	–1 dBm to	+25 dBm	Waveguide	Net: 0.202 kg (0.45 lb)
	40 GHz		+15 dBm (±0.52%)	15 W/2 μs	flange	Shipping: 0.922 kg
			+15 dBm to		UG-599/U	(2.03 lb)
NIOAOCAO	22 011 4	00.011 + 50.011 1.50	+20 dBm (±0.80%)	. 05 . 10	10/	N (0 004 L (0 45 LL)
N8486AQ	33 GHz to 50 GHz	33 GHz to 50 GHz: 1.50	-1 dBm to	+25 dBm 15 W/2 μs	Waveguide	Net: 0.204 kg (0.45 lb) Shipping: 0.924 kg
	30 GHZ		+15 dBm (±0.52%) +15 dBm to	15 W/Z μS	flange UG-383/U	(2.03 lb)
			+20 dBm (±0.80%)		00-303/0	(2.03 10)
High now	er sensors Pov	ver range³: 316 μW to 2		n +44 dRm)		
N8481B	10 MHz to	10 MHz to 2 GHz:1.09	+29 dBm to	+49 dBm	Type-N (m)	Net: 0.684 kg (1.51 lb)
1101015	18 GHz	2 GHz to 12.4 GHz: 1.14	+39 dBm	500 W/1 μs	1,700 11 (111)	Shipping: 1.404 kg
		12.4 GHz to 18 GHz: 1.23	(±0.52%)			(3.09 lb)
N8482B	100 kHz to	100 kHz to 2 GHz: 1.08	+39 dBm to	+49 dBm	Type-N (m)	Net: 0.684 kg (1.51 lb)
	6 GHz	2 GHz to 6 GHz: 1.16	+44 dBm	500 W/1 μs		Shipping: 1.404 kg
			(±0.80%)			(3.09 lb)
		ver range ³ : 31.6 µW to 3				
N8481H	10 MHz to	10 MHz to 8 GHz: 1.20	+17 dBm to	+40 dBm	Type-N (m)	Net: 0.234 kg (0.52 lb)
	18 GHz	8 GHz to 12.4 GHz: 1.25	+30 dBm	100 W/1 μs		Shipping: 0.954 kg
NIOAOOLI	100 1/11- 4-	12.4 GHz to 18 GHz: 1.30	(±0.52%)	140 dD	T. m a N. / \	(2.10 lb)
N8482H	100 kHz to	100 kHz to 6 GHz: 1.13	+30 dBm to	+40 dBm	Type-N (m)	Net: 0.234 kg (0.52 lb)
	6 GHz		+35 dBm (±0.80%)	100 W/1 μs		Shipping: 0.954 kg (2.10 lb)
			(±0.00/0)			(4.10 10)

^{1.} At 25 °C ± 10 °C

^{2.} The N8480 Series power sensors' linearity is negligible except for the power range specified in the table

^{3.} For N8480 Standard (excluding the CFT option)

N8480 Series Thermocouple Power Sensor Specifications (continued)

Switch point data

Switching point is applicable for standard N8480 Series power sensors only.

The N8480 Series power sensors have two power measurement ranges; a lower range and upper range. The power meter automatically selects the proper power range. To avoid unnecessary switching when the power level is near switching point, a **Switching Point Hysteresis** has been added.

Switching point hysteresis:

0.5 dB typical

Example of switching point hysteresis on N8481/2H power sensors, this hysteresis causes the lower range to remain selected until approximately 17.5 dBm as the power level is increased, above this power the upper range is selected.

The upper range remains selected until approximately 16.5 dBm as the signal level decreases, below this power the lower range is selected.

For more detailed specifications, refer to *Agilent N8480 Series Thermocouple Power Sensors*, data sheet (5989-9333EN).

U2000 Series USB Power Sensor Specifications

The U2000 Series USB power sensors are true average, wide-dynamic-range RF/microwave power sensors, based on a dual-sensor diode pair/attenuator/diode pair topology.

The U2000 Series USB power sensors can be operated on N1913A/14A via the USB host port (options).

Frequency and power ranges

Table 17. U2000 Series USB sensors frequency and power ranges

Model	Frequency range	Power range	Maximum power
U2000A	10 MHz to 18 GHz		05.15
U2001A	10 MHz to 6 GHz	-60 dBm to +20 dBm	+25 dBm avg, 20 VDC +33 dBm pk, <10 µs
U2002A	50 MHz to 24 GHz	_	100 αΔΙΙΙ ρκ, <10 μ5
U2004A	9 kHz to 6 GHz	-60 dBm to +20 dBm	+25 dBm avg, 5 VDC +33 dBm pk, <10 μs
U2000B	10 MHz to 18 GHz	— _30 dBm to +44 dBm	+45 dBm avg, 20 VDC
U2001B	10 MHz to 6 GHz	— –30 dBM to +44 dBM	+47 dBm pk, 1 μs
U2000H	10 MHz to 18 GHz	50 dBm to +30 dBm	+33 dBm avg, 20 VDC
U2001H	10 MHz to 6 GHz	— –30 abiii to +30 abiii	+50 dBm pk, 1 μs
U2002H	50 MHz to 24 GHz	-50 dBm to +30 dBm	+33 dBm avg, 10 VDC +50 dBm pk, 1 μs

Power accuracy

Table 18. U2000 Series USB sensors power accuracy

Model	Power range	Accuracy ¹ (25 °C ± 10 °C)	Accuracy ¹ (0 °C to 55 °C)
U2000/1/2/4A	-60 dBm to +20 dBm	±3.0%	±3.5%
U2000/1/2H	-50 dBm to +30 dBm	±4.0%	±5.0%
U2000/1B	-30 dBm to +44 dBm	±3.5%	±4.0%

Specifications valid with the following conditions:

- · After zeroing
- Number of averages = 1024
- · After 30 minutes of power-on warm-up
- 1. This accuracy is essentially a combination of linearity, instrumentation accuracy, and traceability to absolute accuracy at 50 MHz, 0 dBm.
 - Note: Mismatch uncertainty, calibration factor uncertainty, and power level dependent terms (zero set, drift, and noise) are excluded in this specification.

U2000 Series USB Power Sensor Specifications (continued)

Maximum SWR

Table 19. U2000 Series USB sensors maximum SWR

Model	Frequency range	Maximum SWR (25 °C ± 10 °C)	Maximum SWR (0 °C to 55 °C)
U2000A U2001A	10 MHz to 30 MHz 30 MHz to 2 GHz 2 GHz to 14 GHz 14 GHz to 16 GHz 16 GHz to 18 GHz 10 MHz to 30 MHz	1.15 1.13 1.19 1.22 1.26	1.21 1.15 1.20 1.23 1.27
02001A	30 MHz to 2 GHz 2 GHz to 6 GHz	1.13 1.13 1.19	1.21 1.15 1.20
U2002A	50 MHz to 2 GHz	1.13	1.15
	2 GHz to 14 GHz	1.19	1.20
	14 GHz to 16 GHz	1.22	1.23
	16 GHz to 18 GHz	1.26	1.27
	18 GHz to 24 GHz	1.30	1.30
U2004A	9 kHz to 2 GHz	1.13	1.15
	2 GHz to 6 GHz	1.19	1.20
U2000B	10 MHz to 2 GHz	1.12	1.14
	2 GHz to 12.4 GHz	1.17	1.18
	12.4 GHz to 18 GHz	1.24	1.25
U2001B	10 MHz to 2 GHz	1.12	1.14
	2 GHz to 6 GHz	1.17	1.18
U2000H	10 MHz to 8 GHz	1.15	1.17
	8 GHz to 12.4 GHz	1.25	1.26
	12.4 GHz to 18 GHz	1.28	1.29
U2001H	10 MHz to 6 GHz	1.15	1.17
U2002H	50 MHz to 8 GHz	1.15	1.17
	8 GHz to 12.4 GHz	1.25	1.26
	12.4 GHz to 18 GHz	1.28	1.29
	18 GHz to 24 GHz	1.30	1.31

For more detailed specifications, refer to *Agilent U2000 Series USB Power Sensors*, data sheet (5989-6278EN).

www.agilent.com/find/emailupdates Get the latest information on the products and applications you select.

www.lxistandard.org

LAN eXtensions for Instruments puts the power of Ethernet and the Web inside your test systems. Agilent is a founding member of the LXI consortium.

Agilent Channel Partners

www.agilent.com/find/channelpartners

Get the best of both worlds: Agilent's measurement expertise and product breadth, combined with channel partner convenience.

Agilent Advantage Services is committed to your success throughout your equipment's lifetime. We share measurement and service expertise to help you create the products that change our world. To keep you competitive, we continually invest in tools and processes that speed up calibration and repair, reduce your cost of ownership, and move us ahead of your development curve.

www.agilent.com/find/advantageservices

www.agilent.com/quality

www.agilent.com/find/epm

For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at:

www.agilent.com/find/contactus

Americas

Canada	(877) 894 4414
Brazil	(11) 4197 3500
Mexico	01800 5064 800
United States	(800) 829 4444

Asia Pacific

Australia	1 800 629 485
China	800 810 0189
Hong Kong	800 938 693
India	1 800 112 929
Japan	0120 (421) 345
Korea	080 769 0800
Malaysia	1 800 888 848
Singapore	1 800 375 8100
Taiwan	0800 047 866
Other AP Countries	(65) 375 8100

Europe & Middle East

Belgium	32 (0) 2 404 93 40
Denmark	45 70 13 15 15
Finland	358 (0) 10 855 2100
France	0825 010 700*
	*0.125 €/minute
Germany	49 (0) 7031 464 6333
Ireland	1890 924 204
Israel	972-3-9288-504/544
Italy	39 02 92 60 8484
Netherlands	31 (0) 20 547 2111
Spain	34 (91) 631 3300
Sweden	0200-88 22 55
United Kingdom	44 (0) 118 9276201

For other unlisted Countries:

www.agilent.com/find/contactus

Revised: October 14, 2010

Product specifications and descriptions in this document subject to change without notice.

© Agilent Technologies, Inc. 2011 Printed in USA, May 25, 2011 5990-4019EN

